zlib 1.2.3
git-svn-id: https://svn.code.sf.net/p/nsis/code/NSIS/trunk@4183 212acab6-be3b-0410-9dea-997c60f758d6
This commit is contained in:
parent
0a19777905
commit
aa553c8a24
16 changed files with 578 additions and 134 deletions
|
@ -1,12 +1,12 @@
|
|||
/* crc32.c -- compute the CRC-32 of a data stream
|
||||
* Copyright (C) 1995-2003 Mark Adler
|
||||
* Copyright (C) 1995-2005 Mark Adler
|
||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
||||
*
|
||||
* Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
|
||||
* CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
|
||||
* tables for updating the shift register in one step with three exclusive-ors
|
||||
* instead of four steps with four exclusive-ors. This results about a factor
|
||||
* of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
|
||||
* instead of four steps with four exclusive-ors. This results in about a
|
||||
* factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
|
||||
*/
|
||||
|
||||
/* @(#) $Id$ */
|
||||
|
@ -64,6 +64,11 @@
|
|||
# define TBLS 1
|
||||
#endif /* BYFOUR */
|
||||
|
||||
/* Local functions for crc concatenation */
|
||||
local unsigned long gf2_matrix_times OF((unsigned long *mat,
|
||||
unsigned long vec));
|
||||
local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat));
|
||||
|
||||
#ifdef DYNAMIC_CRC_TABLE
|
||||
|
||||
local volatile int crc_table_empty = 1;
|
||||
|
@ -72,7 +77,6 @@ local void make_crc_table OF((void));
|
|||
#ifdef MAKECRCH
|
||||
local void write_table OF((FILE *, const unsigned long FAR *));
|
||||
#endif /* MAKECRCH */
|
||||
|
||||
/*
|
||||
Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
|
||||
x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
|
||||
|
@ -270,7 +274,7 @@ local unsigned long crc32_little(crc, buf, len)
|
|||
len--;
|
||||
}
|
||||
|
||||
buf4 = (const u4 FAR *)buf;
|
||||
buf4 = (const u4 FAR *)(const void FAR *)buf;
|
||||
while (len >= 32) {
|
||||
DOLIT32;
|
||||
len -= 32;
|
||||
|
@ -310,7 +314,7 @@ local unsigned long crc32_big(crc, buf, len)
|
|||
len--;
|
||||
}
|
||||
|
||||
buf4 = (const u4 FAR *)buf;
|
||||
buf4 = (const u4 FAR *)(const void FAR *)buf;
|
||||
buf4--;
|
||||
while (len >= 32) {
|
||||
DOBIG32;
|
||||
|
@ -331,3 +335,89 @@ local unsigned long crc32_big(crc, buf, len)
|
|||
}
|
||||
|
||||
#endif /* BYFOUR */
|
||||
|
||||
#define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */
|
||||
|
||||
/* ========================================================================= */
|
||||
local unsigned long gf2_matrix_times(mat, vec)
|
||||
unsigned long *mat;
|
||||
unsigned long vec;
|
||||
{
|
||||
unsigned long sum;
|
||||
|
||||
sum = 0;
|
||||
while (vec) {
|
||||
if (vec & 1)
|
||||
sum ^= *mat;
|
||||
vec >>= 1;
|
||||
mat++;
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
/* ========================================================================= */
|
||||
local void gf2_matrix_square(square, mat)
|
||||
unsigned long *square;
|
||||
unsigned long *mat;
|
||||
{
|
||||
int n;
|
||||
|
||||
for (n = 0; n < GF2_DIM; n++)
|
||||
square[n] = gf2_matrix_times(mat, mat[n]);
|
||||
}
|
||||
|
||||
/* ========================================================================= */
|
||||
uLong ZEXPORT crc32_combine(crc1, crc2, len2)
|
||||
uLong crc1;
|
||||
uLong crc2;
|
||||
z_off_t len2;
|
||||
{
|
||||
int n;
|
||||
unsigned long row;
|
||||
unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */
|
||||
unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */
|
||||
|
||||
/* degenerate case */
|
||||
if (len2 == 0)
|
||||
return crc1;
|
||||
|
||||
/* put operator for one zero bit in odd */
|
||||
odd[0] = 0xedb88320L; /* CRC-32 polynomial */
|
||||
row = 1;
|
||||
for (n = 1; n < GF2_DIM; n++) {
|
||||
odd[n] = row;
|
||||
row <<= 1;
|
||||
}
|
||||
|
||||
/* put operator for two zero bits in even */
|
||||
gf2_matrix_square(even, odd);
|
||||
|
||||
/* put operator for four zero bits in odd */
|
||||
gf2_matrix_square(odd, even);
|
||||
|
||||
/* apply len2 zeros to crc1 (first square will put the operator for one
|
||||
zero byte, eight zero bits, in even) */
|
||||
do {
|
||||
/* apply zeros operator for this bit of len2 */
|
||||
gf2_matrix_square(even, odd);
|
||||
if (len2 & 1)
|
||||
crc1 = gf2_matrix_times(even, crc1);
|
||||
len2 >>= 1;
|
||||
|
||||
/* if no more bits set, then done */
|
||||
if (len2 == 0)
|
||||
break;
|
||||
|
||||
/* another iteration of the loop with odd and even swapped */
|
||||
gf2_matrix_square(odd, even);
|
||||
if (len2 & 1)
|
||||
crc1 = gf2_matrix_times(odd, crc1);
|
||||
len2 >>= 1;
|
||||
|
||||
/* if no more bits set, then done */
|
||||
} while (len2 != 0);
|
||||
|
||||
/* return combined crc */
|
||||
crc1 ^= crc2;
|
||||
return crc1;
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue