- lzma exehead is now 34kb instead of 34.5kb thanks to the new LZMA C SDK and should be much faster due to removal of critical section usage (not tested too much, test before usage)

- applied some parts of patch #875485


git-svn-id: https://svn.code.sf.net/p/nsis/code/NSIS/trunk@3508 212acab6-be3b-0410-9dea-997c60f758d6
This commit is contained in:
kichik 2004-03-06 18:37:19 +00:00
parent ca9582c925
commit d18cea205c
23 changed files with 761 additions and 1267 deletions

618
Source/7zip/LZMADecode.c Normal file
View file

@ -0,0 +1,618 @@
/*
LzmaDecode.c
LZMA Decoder
LZMA SDK 4.01 Copyright (c) 1999-2004 Igor Pavlov (2004-02-15)
Modified by Amir Szekely
*/
#include "LzmaDecode.h"
#ifndef Byte
#define Byte unsigned char
#endif
#define kNumTopBits 24
#define kTopValue ((UInt32)1 << kNumTopBits)
#define kNumBitModelTotalBits 11
#define kBitModelTotal (1 << kNumBitModelTotalBits)
#define kNumMoveBits 5
void LZMACALL LZMAGetIO(CLZMAStateP lzmaState)
{
InterlockedExchange(&lzmaState->sync_state, 0);
while (InterlockedCompareExchange(&lzmaState->sync_state, 2, 1) != 1)
Sleep(1);
}
Byte LZMACALL RangeDecoderReadByte(CLZMAStateP lzmaState)
{
if (!lzmaState->avail_in)
{
LZMAGetIO(lzmaState);
if (!lzmaState->avail_in)
{
lzmaState->Result = LZMA_RESULT_DATA_ERROR;
return 0xFF;
}
}
lzmaState->avail_in--;
return (*lzmaState->next_in++);
}
#define ReadByte (RangeDecoderReadByte(lzmaState))
FORCE_INLINE void LZMACALL RangeDecoderInit(CLZMAStateP lzmaState)
{
int i = 5;
lzmaState->Code = 0;
lzmaState->Range = (0xFFFFFFFF);
while (i--)
lzmaState->Code = (lzmaState->Code << 8) | ReadByte;
}
#define RC_INIT_VAR UInt32 range = lzmaState->Range; UInt32 code = lzmaState->Code;
#define RC_FLUSH_VAR lzmaState->Range = range; lzmaState->Code = code;
#define RC_NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | ReadByte; }
FORCE_INLINE UInt32 LZMACALL RangeDecoderDecodeDirectBits(CLZMAStateP lzmaState, int numTotalBits)
{
RC_INIT_VAR
UInt32 result = 0;
int i;
for (i = numTotalBits; i > 0; i--)
{
/* UInt32 t; */
range >>= 1;
result <<= 1;
if (code >= range)
{
code -= range;
result |= 1;
}
/*
t = (code - range) >> 31;
t &= 1;
code -= range & (t - 1);
result = (result + result) | (1 - t);
*/
RC_NORMALIZE
}
RC_FLUSH_VAR
return result;
}
int LZMACALL RangeDecoderBitDecode(CProb *prob, CLZMAStateP lzmaState)
{
UInt32 bound = (lzmaState->Range >> kNumBitModelTotalBits) * *prob;
if (lzmaState->Code < bound)
{
lzmaState->Range = bound;
*prob += (kBitModelTotal - *prob) >> kNumMoveBits;
if (lzmaState->Range < kTopValue)
{
lzmaState->Code = (lzmaState->Code << 8) | ReadByte;
lzmaState->Range <<= 8;
}
return 0;
}
else
{
lzmaState->Range -= bound;
lzmaState->Code -= bound;
*prob -= (*prob) >> kNumMoveBits;
if (lzmaState->Range < kTopValue)
{
lzmaState->Code = (lzmaState->Code << 8) | ReadByte;
lzmaState->Range <<= 8;
}
return 1;
}
}
#define RC_GET_BIT2(prob, mi, A0, A1) \
UInt32 bound = (range >> kNumBitModelTotalBits) * *prob; \
if (code < bound) \
{ A0; range = bound; *prob += (kBitModelTotal - *prob) >> kNumMoveBits; mi <<= 1; } \
else \
{ A1; range -= bound; code -= bound; *prob -= (*prob) >> kNumMoveBits; mi = (mi + mi) + 1; } \
RC_NORMALIZE
#define RC_GET_BIT(prob, mi) RC_GET_BIT2(prob, mi, ; , ;)
int LZMACALL RangeDecoderBitTreeDecode(CProb *probs, int numLevels, CLZMAStateP lzmaState)
{
int mi = 1;
int i;
#ifdef _LZMA_LOC_OPT
RC_INIT_VAR
#endif
for(i = numLevels; i > 0; i--)
{
#ifdef _LZMA_LOC_OPT
CProb *prob = probs + mi;
RC_GET_BIT(prob, mi)
#else
mi = (mi + mi) + RangeDecoderBitDecode(probs + mi, lzmaState);
#endif
}
#ifdef _LZMA_LOC_OPT
RC_FLUSH_VAR
#endif
return mi - (1 << numLevels);
}
int LZMACALL RangeDecoderReverseBitTreeDecode(CProb *probs, int numLevels, CLZMAStateP lzmaState)
{
int mi = 1;
int i;
int symbol = 0;
#ifdef _LZMA_LOC_OPT
RC_INIT_VAR
#endif
for(i = 0; i < numLevels; i++)
{
#ifdef _LZMA_LOC_OPT
CProb *prob = probs + mi;
RC_GET_BIT2(prob, mi, ; , symbol |= (1 << i))
#else
int bit = RangeDecoderBitDecode(probs + mi, lzmaState);
mi = mi + mi + bit;
symbol |= (bit << i);
#endif
}
#ifdef _LZMA_LOC_OPT
RC_FLUSH_VAR
#endif
return symbol;
}
FORCE_INLINE Byte LZMACALL LzmaLiteralDecode(CProb *probs, CLZMAStateP lzmaState)
{
int symbol = 1;
#ifdef _LZMA_LOC_OPT
RC_INIT_VAR
#endif
do
{
#ifdef _LZMA_LOC_OPT
CProb *prob = probs + symbol;
RC_GET_BIT(prob, symbol)
#else
symbol = (symbol + symbol) | RangeDecoderBitDecode(probs + symbol, lzmaState);
#endif
}
while (symbol < 0x100);
#ifdef _LZMA_LOC_OPT
RC_FLUSH_VAR
#endif
return symbol;
}
FORCE_INLINE Byte LZMACALL LzmaLiteralDecodeMatch(CProb *probs, CLZMAStateP lzmaState, Byte matchByte)
{
int symbol = 1;
#ifdef _LZMA_LOC_OPT
RC_INIT_VAR
#endif
do
{
int bit;
int matchBit = (matchByte >> 7) & 1;
matchByte <<= 1;
#ifdef _LZMA_LOC_OPT
{
CProb *prob = probs + ((1 + matchBit) << 8) + symbol;
RC_GET_BIT2(prob, symbol, bit = 0, bit = 1)
}
#else
bit = RangeDecoderBitDecode(probs + ((1 + matchBit) << 8) + symbol, lzmaState);
symbol = (symbol << 1) | bit;
#endif
if (matchBit != bit)
{
while (symbol < 0x100)
{
#ifdef _LZMA_LOC_OPT
CProb *prob = probs + symbol;
RC_GET_BIT(prob, symbol)
#else
symbol = (symbol + symbol) | RangeDecoderBitDecode(probs + symbol, lzmaState);
#endif
}
break;
}
}
while (symbol < 0x100);
#ifdef _LZMA_LOC_OPT
RC_FLUSH_VAR
#endif
return symbol;
}
#define kNumPosBitsMax 4
#define kNumPosStatesMax (1 << kNumPosBitsMax)
#define kLenNumLowBits 3
#define kLenNumLowSymbols (1 << kLenNumLowBits)
#define kLenNumMidBits 3
#define kLenNumMidSymbols (1 << kLenNumMidBits)
#define kLenNumHighBits 8
#define kLenNumHighSymbols (1 << kLenNumHighBits)
#define LenChoice 0
#define LenChoice2 (LenChoice + 1)
#define LenLow (LenChoice2 + 1)
#define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits))
#define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits))
#define kNumLenProbs (LenHigh + kLenNumHighSymbols)
int LZMACALL LzmaLenDecode(CProb *p, CLZMAStateP lzmaState, int posState)
{
if(RangeDecoderBitDecode(p + LenChoice, lzmaState) == 0)
return RangeDecoderBitTreeDecode(p + LenLow +
(posState << kLenNumLowBits), kLenNumLowBits, lzmaState);
if(RangeDecoderBitDecode(p + LenChoice2, lzmaState) == 0)
return kLenNumLowSymbols + RangeDecoderBitTreeDecode(p + LenMid +
(posState << kLenNumMidBits), kLenNumMidBits, lzmaState);
return kLenNumLowSymbols + kLenNumMidSymbols +
RangeDecoderBitTreeDecode(p + LenHigh, kLenNumHighBits, lzmaState);
}
#define kNumStates 12
#define kStartPosModelIndex 4
#define kEndPosModelIndex 14
#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
#define kNumPosSlotBits 6
#define kNumLenToPosStates 4
#define kNumAlignBits 4
#define kAlignTableSize (1 << kNumAlignBits)
#define kMatchMinLen 2
#define IsMatch 0
#define IsRep (IsMatch + (kNumStates << kNumPosBitsMax))
#define IsRepG0 (IsRep + kNumStates)
#define IsRepG1 (IsRepG0 + kNumStates)
#define IsRepG2 (IsRepG1 + kNumStates)
#define IsRep0Long (IsRepG2 + kNumStates)
#define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax))
#define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
#define Align (SpecPos + kNumFullDistances - kEndPosModelIndex)
#define LenCoder (Align + kAlignTableSize)
#define RepLenCoder (LenCoder + kNumLenProbs)
#define Literal (RepLenCoder + kNumLenProbs)
#if Literal != LZMA_BASE_SIZE
StopCompilingDueBUG
#endif
int LZMACALL LzmaDecoderInit(CLZMAStateP lzmaState)
{
CProb *p = (CProb *) lzmaState->DynamicData;
UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lzmaState->lc + lzmaState->lp));
if (lzmaState->DynamicDataSize < numProbs * sizeof(CProb))
return LZMA_RESULT_NOT_ENOUGH_MEM;
lzmaState->Result = LZMA_RESULT_OK;
lzmaState->DictionaryPos = 0;
lzmaState->GlobalPos = 0;
lzmaState->Reps[0] = lzmaState->Reps[1] = lzmaState->Reps[2] = lzmaState->Reps[3] = 1;
lzmaState->State = 0;
lzmaState->PreviousIsMatch = 0;
lzmaState->RemainLen = 0;
lzmaState->Dictionary[lzmaState->DictionarySize - 1] = 0;
while (numProbs--)
p[numProbs] = kBitModelTotal >> 1;
RangeDecoderInit(lzmaState);
return LZMA_RESULT_OK;
}
int LZMACALL LzmaDecode(CLZMAStateP lzmaState)
{
CProb *p = (CProb *) lzmaState->DynamicData;
int state = lzmaState->State;
int previousIsMatch = lzmaState->PreviousIsMatch;
Byte previousByte;
UInt32 rep0 = lzmaState->Reps[0], rep1 = lzmaState->Reps[1], rep2 = lzmaState->Reps[2], rep3 = lzmaState->Reps[3];
UInt32 nowPos = 0;
UInt32 posStateMask = (1 << (lzmaState->pb)) - 1;
UInt32 literalPosMask = (1 << (lzmaState->lp)) - 1;
int lc = lzmaState->lc;
int len = lzmaState->RemainLen;
UInt32 globalPos = lzmaState->GlobalPos;
Byte *dictionary = lzmaState->Dictionary;
UInt32 dictionarySize = lzmaState->DictionarySize;
UInt32 dictionaryPos = lzmaState->DictionaryPos;
UInt32 outSize = lzmaState->avail_out;
unsigned char *outStream = lzmaState->next_out;
if (len == -1)
return LZMA_RESULT_OK;
while(len > 0 && nowPos < outSize)
{
UInt32 pos = dictionaryPos - rep0;
if (pos >= dictionarySize)
pos += dictionarySize;
outStream[nowPos++] = dictionary[dictionaryPos] = dictionary[pos];
if (++dictionaryPos == dictionarySize)
dictionaryPos = 0;
len--;
}
if (dictionaryPos == 0)
previousByte = dictionary[dictionarySize - 1];
else
previousByte = dictionary[dictionaryPos - 1];
while(nowPos < outSize)
{
int posState = (int)((nowPos + globalPos) & posStateMask);
if (lzmaState->Result != LZMA_RESULT_OK)
return lzmaState->Result;
if (RangeDecoderBitDecode(p + IsMatch + (state << kNumPosBitsMax) + posState, lzmaState) == 0)
{
CProb *probs = p + Literal + (LZMA_LIT_SIZE *
((((nowPos + globalPos) & literalPosMask) << lc) + (previousByte >> (8 - lc))));
if (state < 4) state = 0;
else if (state < 10) state -= 3;
else state -= 6;
if (previousIsMatch)
{
Byte matchByte;
UInt32 pos = dictionaryPos - rep0;
if (pos >= dictionarySize)
pos += dictionarySize;
matchByte = dictionary[pos];
previousByte = LzmaLiteralDecodeMatch(probs, lzmaState, matchByte);
previousIsMatch = 0;
}
else
previousByte = LzmaLiteralDecode(probs, lzmaState);
outStream[nowPos++] = previousByte;
dictionary[dictionaryPos] = previousByte;
if (++dictionaryPos == dictionarySize)
dictionaryPos = 0;
}
else
{
previousIsMatch = 1;
if (RangeDecoderBitDecode(p + IsRep + state, lzmaState) == 1)
{
if (RangeDecoderBitDecode(p + IsRepG0 + state, lzmaState) == 0)
{
if (RangeDecoderBitDecode(p + IsRep0Long + (state << kNumPosBitsMax) + posState, lzmaState) == 0)
{
UInt32 pos;
if ((nowPos + globalPos) == 0)
return LZMA_RESULT_DATA_ERROR;
state = state < 7 ? 9 : 11;
pos = dictionaryPos - rep0;
if (pos >= dictionarySize)
pos += dictionarySize;
previousByte = dictionary[pos];
dictionary[dictionaryPos] = previousByte;
if (++dictionaryPos == dictionarySize)
dictionaryPos = 0;
outStream[nowPos++] = previousByte;
continue;
}
}
else
{
UInt32 distance;
if(RangeDecoderBitDecode(p + IsRepG1 + state, lzmaState) == 0)
distance = rep1;
else
{
if(RangeDecoderBitDecode(p + IsRepG2 + state, lzmaState) == 0)
distance = rep2;
else
{
distance = rep3;
rep3 = rep2;
}
rep2 = rep1;
}
rep1 = rep0;
rep0 = distance;
}
len = LzmaLenDecode(p + RepLenCoder, lzmaState, posState);
state = state < 7 ? 8 : 11;
}
else
{
int posSlot;
rep3 = rep2;
rep2 = rep1;
rep1 = rep0;
state = state < 7 ? 7 : 10;
len = LzmaLenDecode(p + LenCoder, lzmaState, posState);
posSlot = RangeDecoderBitTreeDecode(p + PosSlot +
((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) <<
kNumPosSlotBits), kNumPosSlotBits, lzmaState);
if (posSlot >= kStartPosModelIndex)
{
int numDirectBits = ((posSlot >> 1) - 1);
rep0 = ((2 | ((UInt32)posSlot & 1)) << numDirectBits);
if (posSlot < kEndPosModelIndex)
{
rep0 += RangeDecoderReverseBitTreeDecode(
p + SpecPos + rep0 - posSlot - 1, numDirectBits, lzmaState);
}
else
{
rep0 += RangeDecoderDecodeDirectBits(lzmaState,
numDirectBits - kNumAlignBits) << kNumAlignBits;
rep0 += RangeDecoderReverseBitTreeDecode(p + Align, kNumAlignBits, lzmaState);
}
}
else
rep0 = posSlot;
rep0++;
}
if (rep0 == (UInt32)(0))
{
/* it's for stream version */
len = -1;
break;
}
if (rep0 > nowPos + globalPos)
{
return LZMA_RESULT_DATA_ERROR;
}
len += kMatchMinLen;
do
{
UInt32 pos = dictionaryPos - rep0;
if (pos >= dictionarySize)
pos += dictionarySize;
previousByte = dictionary[pos];
dictionary[dictionaryPos] = previousByte;
if (++dictionaryPos == dictionarySize)
dictionaryPos = 0;
outStream[nowPos++] = previousByte;
len--;
}
while(len > 0 && nowPos < outSize);
}
}
lzmaState->DictionaryPos = dictionaryPos;
lzmaState->GlobalPos = globalPos + nowPos;
lzmaState->Reps[0] = rep0;
lzmaState->Reps[1] = rep1;
lzmaState->Reps[2] = rep2;
lzmaState->Reps[3] = rep3;
lzmaState->State = state;
lzmaState->PreviousIsMatch = previousIsMatch;
lzmaState->RemainLen = len;
return nowPos;
}
// interface
void LZMACALL lzmaInit(CLZMAStateP lzmaState)
{
if (lzmaState->hThread)
{
CloseHandle(lzmaState->hThread);
lzmaState->hThread = NULL;
}
lzmaState->sync_state = 1;
lzmaState->finished = FALSE;
}
#define kPropertiesSize 5
DWORD WINAPI lzmaDecompressThread(LPVOID lpParameter)
{
CLZMAStateP lzmaState = (CLZMAStateP) lpParameter;
LPBYTE properties;
BYTE firstByte;
UINT32 dictionarySize;
int res;
lzmaState->res = -4;
if (lzmaState->avail_in < kPropertiesSize)
{
goto finished;
}
properties = lzmaState->next_in;
lzmaState->avail_in -= kPropertiesSize;
lzmaState->next_in += kPropertiesSize;
firstByte = properties[0];
if (firstByte > (9*5*5))
{
goto finished;
}
lzmaState->pb = firstByte / (9*5);
firstByte %= (9*5);
lzmaState->lp = firstByte / 9;
firstByte %= 9;
lzmaState->lc = firstByte;
lzmaState->DynamicDataSize = LZMA_BASE_SIZE + (LZMA_LIT_SIZE << (lzmaState->lc + lzmaState->pb));
lzmaState->DynamicDataSize *= sizeof(CProb);
if (!lzmaState->DynamicData || firstByte != lzmaState->FirstProp)
{
if (lzmaState->DynamicData)
GlobalFree(lzmaState->DynamicData);
lzmaState->DynamicData = LZMAAlloc(lzmaState->DynamicDataSize);
lzmaState->FirstProp = firstByte;
}
dictionarySize = *(UINT32 *)(properties + 1);
if (dictionarySize != lzmaState->DictionarySize)
{
if (lzmaState->Dictionary)
GlobalFree(lzmaState->Dictionary);
lzmaState->Dictionary = LZMAAlloc(dictionarySize);
lzmaState->DictionarySize = dictionarySize;
}
LzmaDecoderInit(lzmaState);
for (;;)
{
res = LzmaDecode(lzmaState);
if (res <= 0)
break;
lzmaState->next_out += res;
lzmaState->avail_out -= res;
LZMAGetIO(lzmaState);
}
lzmaState->res = 1;
if (res < 0)
lzmaState->res = res;
finished:
lzmaState->finished = TRUE;
InterlockedExchange(&lzmaState->sync_state, 0);
return 0;
}
int LZMACALL lzmaDecompress(CLZMAStateP lzmaState)
{
if (lzmaState->finished)
return lzmaState->res;
if (!lzmaState->hThread)
{
DWORD dwThreadId;
lzmaState->hThread = CreateThread(0, 0, lzmaDecompressThread, (LPVOID) lzmaState, 0, &dwThreadId);
if (!lzmaState->hThread)
return -4;
}
else
InterlockedExchange(&lzmaState->sync_state, 1);
while (InterlockedCompareExchange(&lzmaState->sync_state, 2, 0) != 0)
Sleep(1);
if (lzmaState->finished)
return lzmaState->res;
return 0;
}