NSIS/Source/7zip/7zip/Compress/LZ/BinTree/BinTreeMain.h

542 lines
13 KiB
C++

// BinTreemain.h
// #include "StdAfx.h"
// #include "BinTree.h"
// #include "Common/NewHandler.h"
#include "../../../../Common/Defs.h"
#include "../../../../Common/CRC.h"
namespace BT_NAMESPACE {
#ifdef HASH_ARRAY_2
static const UINT32 kHash2Size = 1 << 10;
#ifdef HASH_ARRAY_3
static const UINT32 kNumHashDirectBytes = 0;
static const UINT32 kNumHashBytes = 4;
static const UINT32 kHash3Size = 1 << 18;
#ifdef HASH_BIG
static const UINT32 kHashSize = 1 << 23;
#else
static const UINT32 kHashSize = 1 << 20;
#endif
#else
static const UINT32 kNumHashDirectBytes = 3;
static const UINT32 kNumHashBytes = 3;
static const UINT32 kHashSize = 1 << (8 * kNumHashBytes);
#endif
#else
#ifdef HASH_ZIP
static const UINT32 kNumHashDirectBytes = 0;
static const UINT32 kNumHashBytes = 3;
static const UINT32 kHashSize = 1 << 16;
#else
static const UINT32 kNumHashDirectBytes = 2;
static const UINT32 kNumHashBytes = 2;
static const UINT32 kHashSize = 1 << (8 * kNumHashBytes);
#endif
#endif
CInTree::CInTree():
_hash(0),
#ifdef HASH_ARRAY_2
_hash2(0),
#ifdef HASH_ARRAY_3
_hash3(0),
#endif
#endif
_son(0),
_cutValue(0xFF)
{
}
void CInTree::FreeMemory()
{
#ifdef WIN32
if (_son != 0)
VirtualFree(_son, 0, MEM_RELEASE);
if (_hash != 0)
VirtualFree(_hash, 0, MEM_RELEASE);
#else
delete []_son;
delete []_hash;
#endif
_son = 0;
_hash = 0;
CLZInWindow::Free();
}
CInTree::~CInTree()
{
FreeMemory();
}
HRESULT CInTree::Create(UINT32 sizeHistory, UINT32 keepAddBufferBefore,
UINT32 matchMaxLen, UINT32 keepAddBufferAfter, UINT32 sizeReserv)
{
FreeMemory();
try
{
CLZInWindow::Create(sizeHistory + keepAddBufferBefore,
matchMaxLen + keepAddBufferAfter, sizeReserv);
if (_blockSize + 256 > kMaxValForNormalize)
return E_INVALIDARG;
_historySize = sizeHistory;
_matchMaxLen = matchMaxLen;
_cyclicBufferSize = sizeHistory + 1;
UINT32 size = kHashSize;
#ifdef HASH_ARRAY_2
size += kHash2Size;
#ifdef HASH_ARRAY_3
size += kHash3Size;
#endif
#endif
#ifdef WIN32
_son = (CPair *)::VirtualAlloc(0, (_cyclicBufferSize + 1) * sizeof(CPair), MEM_COMMIT, PAGE_READWRITE);
if (_son == 0)
throw CMemoryException();
_hash = (CIndex *)::VirtualAlloc(0, (size + 1) * sizeof(CIndex), MEM_COMMIT, PAGE_READWRITE);
if (_hash == 0)
throw CMemoryException();
#else
_son = new CPair[_cyclicBufferSize + 1];
_hash = new CIndex[size + 1];
#endif
// m_RightBase = &m_LeftBase[_blockSize];
// _hash = &m_RightBase[_blockSize];
#ifdef HASH_ARRAY_2
_hash2 = &_hash[kHashSize];
#ifdef HASH_ARRAY_3
_hash3 = &_hash2[kHash2Size];
#endif
#endif
return S_OK;
}
catch(...)
{
FreeMemory();
return E_OUTOFMEMORY;
}
}
static const UINT32 kEmptyHashValue = 0;
HRESULT CInTree::Init(ISequentialInStream *stream)
{
RINOK(CLZInWindow::Init(stream));
unsigned int i;
for(i = 0; i < kHashSize; i++)
_hash[i] = kEmptyHashValue;
#ifdef HASH_ARRAY_2
for(i = 0; i < kHash2Size; i++)
_hash2[i] = kEmptyHashValue;
#ifdef HASH_ARRAY_3
for(i = 0; i < kHash3Size; i++)
_hash3[i] = kEmptyHashValue;
#endif
#endif
_cyclicBufferPos = 0;
ReduceOffsets(0 - 1);
return S_OK;
}
#ifdef HASH_ARRAY_2
#ifdef HASH_ARRAY_3
inline UINT32 Hash(const BYTE *pointer, UINT32 &hash2Value, UINT32 &hash3Value)
{
UINT32 temp = CCRC::Table[pointer[0]] ^ pointer[1];
hash2Value = temp & (kHash2Size - 1);
hash3Value = (temp ^ (UINT32(pointer[2]) << 8)) & (kHash3Size - 1);
return (temp ^ (UINT32(pointer[2]) << 8) ^ (CCRC::Table[pointer[3]] << 5)) &
(kHashSize - 1);
}
#else // no HASH_ARRAY_3
inline UINT32 Hash(const BYTE *pointer, UINT32 &hash2Value)
{
hash2Value = (CCRC::Table[pointer[0]] ^ pointer[1]) & (kHash2Size - 1);
return (*((const UINT32 *)pointer)) & 0xFFFFFF;
}
#endif // HASH_ARRAY_3
#else // no HASH_ARRAY_2
#ifdef HASH_ZIP
inline UINT32 Hash(const BYTE *pointer)
{
return ((UINT32(pointer[0]) << 8) ^
CCRC::Table[pointer[1]] ^ pointer[2]) & (kHashSize - 1);
}
#else // no HASH_ZIP
inline UINT32 Hash(const BYTE *pointer)
{
return pointer[0] ^ (UINT32(pointer[1]) << 8);
}
#endif // HASH_ZIP
#endif // HASH_ARRAY_2
UINT32 CInTree::GetLongestMatch(UINT32 *distances)
{
UINT32 currentLimit;
if (_pos + _matchMaxLen <= _streamPos)
currentLimit = _matchMaxLen;
else
{
currentLimit = _streamPos - _pos;
if(currentLimit < kNumHashBytes)
return 0;
}
UINT32 matchMinPos = (_pos > _historySize) ? (_pos - _historySize) : 1;
BYTE *cur = _buffer + _pos;
UINT32 matchHashLenMax = 0;
#ifdef HASH_ARRAY_2
UINT32 hash2Value;
#ifdef HASH_ARRAY_3
UINT32 hash3Value;
UINT32 hashValue = Hash(cur, hash2Value, hash3Value);
#else
UINT32 hashValue = Hash(cur, hash2Value);
#endif
#else
UINT32 hashValue = Hash(cur);
#endif
UINT32 curMatch = _hash[hashValue];
#ifdef HASH_ARRAY_2
UINT32 curMatch2 = _hash2[hash2Value];
#ifdef HASH_ARRAY_3
UINT32 curMatch3 = _hash3[hash3Value];
#endif
_hash2[hash2Value] = _pos;
bool matchLen2Exist = false;
UINT32 len2Distance = 0;
if(curMatch2 >= matchMinPos)
{
if (_buffer[curMatch2] == cur[0])
{
len2Distance = _pos - curMatch2 - 1;
matchHashLenMax = 2;
matchLen2Exist = true;
}
}
#ifdef HASH_ARRAY_3
_hash3[hash3Value] = _pos;
UINT32 matchLen3Exist = false;
UINT32 len3Distance = 0;
if(curMatch3 >= matchMinPos)
{
if (_buffer[curMatch3] == cur[0])
{
len3Distance = _pos - curMatch3 - 1;
matchHashLenMax = 3;
matchLen3Exist = true;
if (matchLen2Exist)
{
if (len3Distance < len2Distance)
len2Distance = len3Distance;
}
else
{
len2Distance = len3Distance;
matchLen2Exist = true;
}
}
}
#endif
#endif
_hash[hashValue] = _pos;
if(curMatch < matchMinPos)
{
_son[_cyclicBufferPos].Left = kEmptyHashValue;
_son[_cyclicBufferPos].Right = kEmptyHashValue;
#ifdef HASH_ARRAY_2
distances[2] = len2Distance;
#ifdef HASH_ARRAY_3
distances[3] = len3Distance;
#endif
#endif
return matchHashLenMax;
}
CIndex *ptrLeft = &_son[_cyclicBufferPos].Right;
CIndex *ptrRight = &_son[_cyclicBufferPos].Left;
UINT32 maxLen, minSameLeft, minSameRight, minSame;
maxLen = minSameLeft = minSameRight = minSame = kNumHashDirectBytes;
#ifdef HASH_ARRAY_2
#ifndef HASH_ARRAY_3
if (matchLen2Exist)
distances[2] = len2Distance;
else
if (kNumHashDirectBytes >= 2)
distances[2] = _pos - curMatch - 1;
#endif
#endif
distances[maxLen] = _pos - curMatch - 1;
for(UINT32 count = _cutValue; count > 0; count--)
{
BYTE *pby1 = _buffer + curMatch;
// CIndex left = _son[curMatch].Left; // it's prefetch
UINT32 currentLen;
for(currentLen = minSame; currentLen < currentLimit; currentLen++/*, dwComps++*/)
if (pby1[currentLen] != cur[currentLen])
break;
while (currentLen > maxLen)
distances[++maxLen] = _pos - curMatch - 1;
UINT32 delta = _pos - curMatch;
UINT32 cyclicPos = (delta <= _cyclicBufferPos) ?
(_cyclicBufferPos - delta):
(_cyclicBufferPos - delta + _cyclicBufferSize);
if (currentLen != currentLimit)
{
if (pby1[currentLen] < cur[currentLen])
{
*ptrRight = curMatch;
ptrRight = &_son[cyclicPos].Right;
curMatch = _son[cyclicPos].Right;
if(currentLen > minSameLeft)
{
minSameLeft = currentLen;
minSame = MyMin(minSameLeft, minSameRight);
}
}
else
{
*ptrLeft = curMatch;
ptrLeft = &_son[cyclicPos].Left;
// curMatch = left;
curMatch = _son[cyclicPos].Left;
if(currentLen > minSameRight)
{
minSameRight = currentLen;
minSame = MyMin(minSameLeft, minSameRight);
}
}
}
else
{
if(currentLen < _matchMaxLen)
{
*ptrLeft = curMatch;
ptrLeft = &_son[cyclicPos].Left;
curMatch = _son[cyclicPos].Left;
if(currentLen > minSameRight)
{
minSameRight = currentLen;
minSame = MyMin(minSameLeft, minSameRight);
}
}
else
{
*ptrLeft = _son[cyclicPos].Right;
*ptrRight = _son[cyclicPos].Left;
#ifdef HASH_ARRAY_2
if (matchLen2Exist && len2Distance < distances[2])
distances[2] = len2Distance;
#ifdef HASH_ARRAY_3
if (matchLen3Exist && len3Distance < distances[3])
distances[3] = len3Distance;
#endif
#endif
return maxLen;
}
}
if(curMatch < matchMinPos)
break;
}
*ptrLeft = kEmptyHashValue;
*ptrRight = kEmptyHashValue;
#ifdef HASH_ARRAY_2
if (matchLen2Exist)
{
if (maxLen < 2)
{
distances[2] = len2Distance;
maxLen = 2;
}
else if (len2Distance < distances[2])
distances[2] = len2Distance;
}
#ifdef HASH_ARRAY_3
if (matchLen3Exist)
{
if (maxLen < 3)
{
distances[3] = len3Distance;
maxLen = 3;
}
else if (len3Distance < distances[3])
distances[3] = len3Distance;
}
#endif
#endif
return maxLen;
}
void CInTree::DummyLongestMatch()
{
UINT32 currentLimit;
if (_pos + _matchMaxLen <= _streamPos)
currentLimit = _matchMaxLen;
else
{
currentLimit = _streamPos - _pos;
if(currentLimit < kNumHashBytes)
return;
}
UINT32 matchMinPos = (_pos > _historySize) ? (_pos - _historySize) : 1;
BYTE *cur = _buffer + _pos;
#ifdef HASH_ARRAY_2
UINT32 hash2Value;
#ifdef HASH_ARRAY_3
UINT32 hash3Value;
UINT32 hashValue = Hash(cur, hash2Value, hash3Value);
_hash3[hash3Value] = _pos;
#else
UINT32 hashValue = Hash(cur, hash2Value);
#endif
_hash2[hash2Value] = _pos;
#else
UINT32 hashValue = Hash(cur);
#endif
UINT32 curMatch = _hash[hashValue];
_hash[hashValue] = _pos;
if(curMatch < matchMinPos)
{
_son[_cyclicBufferPos].Left = kEmptyHashValue;
_son[_cyclicBufferPos].Right = kEmptyHashValue;
return;
}
CIndex *ptrLeft = &_son[_cyclicBufferPos].Right;
CIndex *ptrRight = &_son[_cyclicBufferPos].Left;
UINT32 maxLen, minSameLeft, minSameRight, minSame;
maxLen = minSameLeft = minSameRight = minSame = kNumHashDirectBytes;
for(UINT32 count = _cutValue; count > 0; count--)
{
BYTE *pby1 = _buffer + curMatch;
// CIndex left = _son[curMatch].Left; // it's prefetch
UINT32 currentLen;
for(currentLen = minSame; currentLen < currentLimit; currentLen++/*, dwComps++*/)
if (pby1[currentLen] != cur[currentLen])
break;
UINT32 delta = _pos - curMatch;
UINT32 cyclicPos = (delta <= _cyclicBufferPos) ?
(_cyclicBufferPos - delta):
(_cyclicBufferPos - delta + _cyclicBufferSize);
if (currentLen != currentLimit)
{
if (pby1[currentLen] < cur[currentLen])
{
*ptrRight = curMatch;
ptrRight = &_son[cyclicPos].Right;
curMatch = _son[cyclicPos].Right;
if(currentLen > minSameLeft)
{
minSameLeft = currentLen;
minSame = MyMin(minSameLeft, minSameRight);
}
}
else
{
*ptrLeft = curMatch;
ptrLeft = &_son[cyclicPos].Left;
curMatch = _son[cyclicPos].Left;
// curMatch = left;
if(currentLen > minSameRight)
{
minSameRight = currentLen;
minSame = MyMin(minSameLeft, minSameRight);
}
}
}
else
{
if(currentLen < _matchMaxLen)
{
*ptrLeft = curMatch;
ptrLeft = &_son[cyclicPos].Left;
curMatch = _son[cyclicPos].Left;
if(currentLen > minSameRight)
{
minSameRight = currentLen;
minSame = MyMin(minSameLeft, minSameRight);
}
}
else
{
*ptrLeft = _son[cyclicPos].Right;
*ptrRight = _son[cyclicPos].Left;
return;
}
}
if(curMatch < matchMinPos)
break;
}
*ptrLeft = kEmptyHashValue;
*ptrRight = kEmptyHashValue;
}
void CInTree::NormalizeLinks(CIndex *array, UINT32 numItems, UINT32 subValue)
{
for (UINT32 i = 0; i < numItems; i++)
{
UINT32 value = array[i];
if (value <= subValue)
value = kEmptyHashValue;
else
value -= subValue;
array[i] = value;
}
}
void CInTree::Normalize()
{
UINT32 startItem = _pos - _historySize;
UINT32 subValue = startItem - 1;
// NormalizeLinks((CIndex *)(_son + startItem), _historySize * 2, subValue);
NormalizeLinks((CIndex *)_son, _cyclicBufferSize * 2, subValue);
NormalizeLinks(_hash, kHashSize, subValue);
#ifdef HASH_ARRAY_2
NormalizeLinks(_hash2, kHash2Size, subValue);
#ifdef HASH_ARRAY_3
NormalizeLinks(_hash3, kHash3Size, subValue);
#endif
#endif
ReduceOffsets(subValue);
}
}